Friday 17 June 2016

Wheat midge pheromone trapping

This week at the farm: wheat midge monitoring

Our wheat midge monitoring will be getting into full swing very quickly.  Make sure to check out the 2016 Wheat midge forecast map and read the protocol on wheat midge. 

This week we have a short comic to help you better understand wheat midge pheromone trapping and what we can do with this tool. In the coming weeks look forward to learning why this pest is so important to monitor.

Page 1 (click to enlarge)
Page 2 (click to enlarge)

Thursday 16 June 2016

2016 Natural Enemies Project

There has been much going on so far this summer with our Wheat Midge Natural Enemies Project.  So far, we have seeded our plot trial and have been collecting samples from the plots using a method called pitfall trapping.  This is similar to what Hannah described here for the pea leaf weevil but these traps do not use a lure. The pitfall traps used for this study are comprised of two containers and a funnel made out of the top portion of a 2-Liter pop bottle.  As they are walking along the soil surface, arthropods fall into the funnel and slide down into the trap, which contains a mixture of antifreeze and water.  This solution kills and preserves them until we collect them each week.



Figure 1.  (A) The pitfall trap sits flush with soil in the middle a row in each plot. (B) The pitfall sample after the inner container has been removed.  Specimens are preserved in antifreeze solution which is the pink liquid that can be seen in the photo.

The pitfall traps collect a variety of arthropods which includes a fascinating array of beetle species.  The beetles we collect come in all shapes and vary from 2 mm to 4 cm in length.  Some of the most exciting of these are the beetle predators which are one of the main focuses of this study.  The goal of this project is to provide a unique comparison of beetle diversity and the rotation practices utilized by growers in the Peace River region.


Figure 2.  The biodiversity of beetles collected in wheat can be seen in this sample from the 2015 pitfall trap collections.

Ground Beetles
Carabidae, commonly known as ground beetles, is the largest family in the suborder, Adephaga, which comes from the Greek adephagos or ‘gluttonous.’  Gluttonous goes a long way in describing this family, as ground beetles are voracious feeders and often are cited as important predators.  Ground beetles are known to feed on aphids, cabbage root flies, Lepidopteran larvae, and many other pest species.  Carabid beetles make up the vast majority of the beetles we pick up in our pitfall traps.  Keep an eye out for them in the field; they have long slender legs made for running and vary in color.  Dark coloration generally denotes nocturnal species and metallic coloration usually indicates species that are active during the day.



Tiger Beetles
Though they may look quite different, tiger beetles are a sub-order in the Carabidae family.  Tiger beetles have long, sickle shaped mandibles (mouthparts made for chewing) and bulging eyes.  The larval stage of these beetles is known to create tunnels in the soil substrate.  There, they lie in wait to ambush prey at the opening of the tunnel.  When their prey walks by, the larva grabs it and drags it down to the bottom of the tunnel to feed.  The adults of these species are rapid fliers and have distinctly long legs that allow them to run quickly over the soil surface.    


Rove Beetles
Staphylinidae, or rove beetles, are another important family in terms of predation.  Rove beetles typically have shortened elytra that do not completely cover their abdomen.  Elytra are the hardened forewings that characterize all beetles.  Having shortened elytra allows rove beetles to maneuver more readily in the field.  However, there is a trade off - shortened elytra expose them to a greater risk of desiccation which makes them dependent on humid habitats.  Rove beetles are great predators and can even be parasitic.  Check out this link to see one of the parasitic rove beetles (Aleochara spp.) that emerged from a cabbage root fly pupa that we collected in October 2015.



-Shelby

Monday 6 June 2016

Bertha armyworm monitoring

This week on the Farm: Bertha Armyworm (Mamestra configurata)

The past few days we have been very busy setting up Bertha Army Worm traps.  Bertha Armyworm adults will begin to emerge from their overwintering pupa around early June and will continue until early August. The number of adults collected by a trap will provide an indication of the risk of larval damage.

When setting up a monitoring site for Bertha Armyworm, it is important that the traps are not placed next to a shelterbelt, ditch, or within ½ a kilometer of a strong light source. Each trap should be located about 2 m from the edge of the field.  In the Peace River region, previous trapping has resulted in high numbers of native Bombus species so only one trap is deployed per site.

The traps used to monitor Bertha Armyworm are called Unitraps. The trap is all green and is mounted  approximately 1metre above the ground on a strong stake (Figure 1). Inside the trap, a pheromone lure is positioned to attracts male moths into the bucket then a Vapona insecticide strip within the bottom of the trap kills the males once they are inside the bucket.

Figure 1. Unitrap mounted on stake within a field
(photo source: http://insectpestmanagement.blogspot.ca/p/blog-page.html)

Our Bertha armyworm traps are collected weekly.  To do so, the Unitrap is opened, the contents are carefully emptied into a small brown paper bag which is labelled then stapled shut. The sample is taken back to the lab where the moths and by-catch are sorted and typically the specimens are pinned and labelled.  

Presently, non-automated traps are used.  However, because Bertha Armyworm moths are active at dusk, our lab has tested automated pheromone traps that remain closed during the day to reduce by-catch of Bombus species.  That automated traps were designed to remain closed during the day but automatically open in the evening to attract and intercept bertha armyworm males during peak flight times.

For more information on Bertha Armyworms follow the link to the protocol: http://www.westernforum.org/Documents/IPMN%20Protocols/2013_BAW%20Monitoring%20protocol.pdf

-Kaitlin